您现在所在位置: b体育 > b体育新闻

公司资讯

Company information

行业动态

Industry dynamics

常见问题

Common Problem

b体育【半导体】半导体介绍-万通百科

发布日期:2023-11-22 13:40 浏览次数:

  半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

  半导体(semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机电视机以及测温上有着广泛的应用。

  物质存在的形式多种多样,固体、液体、气体、等离子体等。通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

  本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。空穴导电并不是实际运动,而是一种等效。电子导电时等电量的空穴会沿其反方向运动 。它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多发展历程1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。

  1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。

  1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。

  1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。

  2015年中国在公布的“中国制造2025”战略中提出培育半导体产业。为此,中国地方政府竞相利用优惠政策吸引国内外的半导体相关企业。

  2018年4月11日,复旦大学微电子学院教授张卫、周鹏团队成员刘春森在实验室内对硅片进行切割。张卫、周鹏团队实现了具有颠覆性的二维半导体准非易失存储原型器件,开创了第三类存储技术。中国大型半导体企业紫光集团旗下的长江存储科技在湖北省武汉市推进的三维NAND的量产项目,爱德万测试的销售负责人称“估计将在2018年底到2019年迅速实现量产”。

  2018年4月24日,《日本经济新闻》预计最早在2018年底开始向市场供应尖端产品三维NAND型闪存芯片。曾在液晶面板等众多产业出现的产品供给过剩也可能在半导体领域引发价格下跌。无线潜力由于智能型手机消费者需求的增加,无线市场目前是半导体应用中,成长扩大速度最快的一个领域。随着智能型手机需求的增加,而朝向无线基地台的普及及网路基本设备的扩展发展。

  Databeans在该报告中指出,通讯应用的各部门均分成无线市场与有线市场两大类。分类为「无线」的产品包含行动电话(功能型手机,智能型手机)、无线基本设备(行动电话基地台等)、短距离无线、蓝牙,ZigBee,NFC)、及其他无线(无线电芯片等)部门。将无线市场视为单一部门来看,则该市场规模在半导体领域上,是仅次于计算机市场的第二大市场。2012年预计全球市场的销售额将比前一年增加6%,达到约755亿美金。这是约占半导体全球市场的25%市占率的水准。更进一步来看,无线市场是半导体消费整体市场中成长率最高的部门,预计接下来的五年间,成长率将大于整体市场的成长率。主要特点半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。

  在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。

  共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。

  自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。

  空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。

  本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。

  本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。

  复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。

  动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。

  载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。当温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多(即载流子的浓度升高),导电性能增强;当温度降低,则载流子的浓度降低,导电性能变差。

  结论:本征半导体的导电性能与温度有关。半导体材料性能对温度的敏感性,可制作热敏和光敏器件,又造成半导体器件温度稳定性差的原因。

  杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。

  P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成了P型半导体。

  多数载流子:P型半导体中,空穴的浓度大于自由电子的浓度,称为多数载流子,简称多子。

  P型半导体的导电特性:它是靠空穴导电,掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。

  N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,形成N型半导体。

  N型半导体的导电特性:掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。

  PN结的形成过程:如图所示,将P型半导体与N型半导体制作在同一块硅片上,在无外电场和其它激发作用下,参与扩散运动的多子数目等于参与漂移运动的少子数目,从而达到动态平衡,形成PN结。

  扩散运动:物质总是从浓度高的地方向浓度低的地方运动,这种由于浓度差而产生的运动称为扩散运动。

  空间电荷区:扩散到P区的自由电子与空穴复合,而扩散到N区的空穴与自由电子复合,所以在交界面附近多子的浓度下降,P区出现负离子区,N区出现正离子区,它们是不能移动,称为空间电荷区。

  耗尽层:绝大部分空间电荷区内自由电子和空穴的数目都非常少,在分析PN结时常忽略载流子的作用,而只考虑离子区的电荷,称耗尽层。

  PN结的特点:具有单向导电性。基本术语半导体中的杂质对电阻率的影响非常大。半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产加的杂质能级。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价结合,多余的一个电子被束缚于杂质原子附近,产生类氢能级。杂质能级位于禁带上方靠近导带底附近。杂质能级上的电子很易激发到导带成为电子载流子。这种能提供电子载流子的杂质称为施主,相应能级称为施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多(图2)。在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是杂质能级,通常位于禁带下方靠近价带处。价带中的电子很易激发到杂质能级上填补这个空位,使杂质原子成为负离子。价带中由于缺少一个电子而形成一个空穴载流子。这种能提供空穴的杂质称为受主杂质。存在受主杂质时,在价带中形成一个空穴载流子所需能量比本征半导体情形要小得多。半导体掺杂后其电阻率大大下降。加热或光照产生的热激发或光激发都会使自由载流子数增加而导致电阻率减小,半导体热敏电阻和光敏电阻就是根据此原理制成的。对掺入施主杂质的半导体,导电载流子主要是导带中的电子,属电子型导电,称N型半导体(图3)。掺入受主杂质的半导体属空穴型导电,称P型半导体。半导体在任何温度下都能产生电子-空穴对,故N型半导体中可存在少量导电空穴,P型半导体中可存在少量导电电子,它们均称为少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。

  P型半导体与N型半导体相互接触时,其交界区域称为PN结。P区中的自由空穴和N区中的自由电子要向对方区域扩散,造成正负电荷在PN 结两侧的积累,形成电偶极层(图4 )。电偶极层中的电场方向正好阻止扩散的进行。当由于载流子数密度不等引起的扩散作用与电偶层中电场的作用达到平衡时,P区和N区之间形成一定的电势差,称为接触电势差。由于P 区中的空穴向N区扩散后与N区中的电子复合,而N区中的电子向P区扩散后与P 区中的空穴复合,这使电偶极层中自由载流子数减少而形成高阻层,故电偶极层也叫阻挡层,阻挡层的电阻值往往是组成PN结的半导体的原有阻值的几十倍乃至几百倍b体育。

  PN结具有单向导电性,半导体整流管就是利用PN结的这一特性制成的。PN结的另一重要性质是受到光照后能产生电动势,称光生伏打效应,可利用来制造光电池。半导体三极管、可控硅、PN结光敏器件和发光二极管等半导体器件均利用了PN结的特性。

  P端接电源的正极,N端接电源的负极称之为PN结正偏。此时PN结如同一个开关合上,呈现很小的电阻,称之为导通状态。

  P端接电源的负极,N端接电源的正极称之为PN结反偏,此时PN结处于截止状态,如同开关打开。结电阻很大,当反向电压加大到一定程度,PN结会发生击穿而损坏。

  半导体之所以能广泛应用在今日的数位世界中,凭借的就是其能借由在其晶格中植入杂质改变其电性,这个过程称之为掺杂(doping)。掺杂进入本质半导体(intrinsic semiconductor)的杂质浓度与极性皆会对半导体的导电特性产生很大的影响。而掺杂过的半导体则称为外质半导体(extrinsic semiconductor)。

  哪种材料适合作为某种半导体材料的掺杂物(dopant)需视两者的原子特性而定。一般而言,掺杂物依照其带给被掺杂材料的电荷正负被区分为施主(donor)与受主(acceptor)。施主原子带来的价电子(valence electrons)大多会与被掺杂的材料原子产生共价键,进而被束缚。而没有和被掺杂材料原子产生共价键的电子则会被施主原子微弱地束缚住,这个电子又称为施主电子。和本质半导体的价电子比起来,施主电子跃迁至传导带所需的能量较低,比较容易在半导体材料的晶格中移动,产生电流。虽然施主电子获得能量会跃迁至传导带,但并不会和本质半导体一样留下一个电洞,施主原子在失去了电子后只会固定在半导体材料的晶格中。因此这种因为掺杂而获得多余电子提供传导的半导体称为n型半导体(n-type semiconductor),n代表带负电荷的电子。

  和施主相对的,受主原子进入半导体晶格后,因为其价电子数目比半导体原子的价电子数量少,等效上会带来一个的空位,这个多出的空位即可视为电洞。受主掺杂后的半导体称为p型半导体(p-type semiconductor),p代表带正电荷的电洞。

  以一个硅的本质半导体来说明掺杂的影响。硅有四个价电子,常用于硅的掺杂物有三价与五价的元素。当只有三个价电子的三价元素如硼(boron)掺杂至硅半导体中时,硼扮演的即是受主的角色,掺杂了硼的硅半导体就是p型半导体。反过来说,如果五价元素如磷(phosphorus)掺杂至硅半导体时,磷扮演施主的角色,掺杂磷的硅半导体成为n型半导体。

  一个半导体材料有可能先后掺杂施主与受主,而如何决定此外质半导体为n型或p型必须视掺杂后的半导体中,受主带来的电洞浓度较高或是施主带来的电子浓度较高,亦即何者为此外质半导体的“多数载子”(majority carrier)。和多数载子相对的是少数载子(minority carrier)。对于半导体元件的操作原理分析而言,少数载子在半导体中的行为有着非常重要的地位。

  掺杂物浓度对于半导体最直接的影响在于其载子浓度。在热平衡的状态下,一个未经掺杂的本质半导体,电子与电洞的浓度相等,如下列公式所示:

  n= p= n其中n是半导体内的电子浓度、p则是半导体的电洞浓度,n则是本质半导体的载子浓度。n会随着材料或温度的不同而改变。对于室温下的硅而言,n大约是1×10 cm。

  通常掺杂浓度越高,半导体的导电性就会变得越好,原因是能进入传导带的电子数量会随着掺杂浓度提高而增加。掺杂浓度非常高的半导体会因为导电性接近金属而被广泛应用在今日的集成电路制程来取代部份金属。高掺杂浓度通常会在n或是p后面附加一上标的“+”号,例如n代表掺杂浓度非常高的n型半导体,反之例如p则代表轻掺杂的p型半导体。需要特别说明的是即使掺杂浓度已经高到让半导体“退化”(degenerate)为导体,掺杂物的浓度和原本的半导体原子浓度比起来还是差距非常大。以一个有晶格结构的硅本质半导体而言,原子浓度大约是5×10 cm,而一般集成电路制程里的掺杂浓度约在10 cm至10 cm之间。掺杂浓度在10 cm以上的半导体在室温下通常就会被视为是一个“简并半导体”(degenerated semiconductor)。重掺杂的半导体中,掺杂物和半导体原子的浓度比约是千分之一,而轻掺杂则可能会到十亿分之一的比例。在半导体制程中,掺杂浓度都会依照所制造出元件的需求量身打造,以合于使用者的需求。

  掺杂之后的半导体能带会有所改变。依照掺杂物的不同,本质半导体的能隙之间会出现不同的能阶。施主原子会在靠近传导带的地方产生一个新的能阶,而受主原子则是在靠近价带的地方产生新的能阶。假设掺杂硼原子进入硅,则因为硼的能阶到硅的价带之间仅有0.045电子伏特,远小于硅本身的能隙1.12电子伏特,所以在室温下就可以使掺杂到硅里的硼原子完全解离化(ionize)。

  掺杂物对于能带结构的另一个重大影响是改变了费米能阶的位置。在热平衡的状态下费米能阶依然会保持定值,这个特性会引出很多其他有用的电特性。举例来说,一个p-n接面(p-n junction)的能带会弯折,起因是原本p型半导体和n型半导体的费米能阶位置各不相同,但是形成p-n接面后其费米能阶必须保持在同样的高度,造成无论是p型或是n型半导体的传导带或价带都会被弯曲以配合接面处的能带差异。

  上述的效应可以用能带图(band diagram)来解释,。在能带图里横轴代表位置,纵轴则是能量。图中也有费米能阶,半导体的本质费米能阶(intrinsic Fermi level)通常以E来表示。在解释半导体元件的行为时,能带图是非常有用的工具。

  为了满足量产上的需求,半导体的电性必须是可预测并且稳定的,因此包括掺杂物的纯度以及半导体晶格结构的品质都必须严格要求。常见的品质问题包括晶格的错位(dislocation)、双晶面(twins),或是堆栈错误(stacking fault)都会影响半导体材料的特性。对于一个半导体元件而言,材料晶格的缺陷通常是影响元件性能的主因。

  目前用来成长高纯度单晶半导体材料最常见的方法称为裘可拉斯基制程(Czochralski process)b体育。这种制程将一个单晶的晶种(seed)放入溶解的同材质液体中,再以旋转的方式缓缓向上拉起。在晶种被拉起时,溶质将会沿着固体和液体的接口固化,而旋转则可让溶质的温度均匀。

  半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟半导体、数字、模拟数字混成及功能进行分类的方法。其他资料多样性

  物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

  伏安特性曲线:加在PN结两端的电压和流过二极管的电流之间的关系曲线称为伏安特性曲线。如图所示:

  反向击穿:当反向电压超过一定数值U(BR)后,反向电流急剧增加,称之反向击穿。

  变容二极管:当PN结加反向电压时,Cb明显随u的变化而变化,而制成各种变容二极管。如下图所示。

  非平衡少子:PN结处于正向偏置时,从P区扩散到N区的空穴和从N区扩散到P区的自由电子均称为非平衡少子。

  扩散电容:扩散区内电荷的积累和释放过程与电容器充、放电过程相同,这种电容效应称为Cd。

  结电容:势垒电容与扩散电容之和为PN结的结电容Cj。应用领域最早的实用“半导体”是「电晶体(Transistor)/ 二极体(Diode)」。

  一、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。

  二、近来发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。

  三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线℃,是性价比极高的一种测温元件。命名方法中国命名方法

  半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、激光器件的型号命名只有第三、四、五部分)组成。五个部分意义如下:

  第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极管时:A-N型锗材料、B-P型锗材料、C-N型硅材料、D-P型硅材料。表示三极管时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型硅材料、D-NPN型硅材料。

  第三部分:用汉语拼音字母表示半导体器件的内型。P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F3MHz,Pc1W)、A-高频大功率管(f>

  3MHz,Pc>

  1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-激光器件。

  日本生产的半导体分立器件,由五至七部分组成。通常只用到前五个部分,其各部分的符号意义如下:

  第一部分:用数字表示器件有效电极数目或类型。0-光电(即光敏)二极管三极管及上述器件的组合管、1-二极管、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。

  第二部分:日本电子工业协会JEIA注册标志。S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。

  第三部分:用字母表示器件使用材料极性和类型。A-PNP型高频管、B-PNP型低频管、C-NPN型高频管、D-NPN型低频管、F-P控制极可控硅、G-N控制极可控硅、H-N基极单结晶体管、J-P沟道场效应管、K-N 沟道场效应管、M-双向可控硅。

  第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。两位以上的整数-从“11”开始,表示在日本电子工业协会JEIA登记的顺序号;不同公司的性能相同的器件可以使用同一顺序号;数字越大,越是近期产品。

  第五部分:用字母表示同一型号的改进型产品标志。A、B、C、D、E、F表示这一器件是原型号产品的改进产品。

  美国晶体管或其他半导体器件的命名法较混乱。美国电子工业协会半导体分立器件命名方法如下:

  第一部分:用符号表示器件用途的类型。JAN-军级、JANTX-特军级、JANTXV-超特军级、JANS-宇航级、(无)-非军用品。

  第二部分:用数字表示pn结数目。1-二极管、2=三极管、3-三个pn结器件、n-n个pn结器件。

  第三部分:美国电子工业协会(EIA)注册标志。N-该器件已在美国电子工业协会(EIA)注册登记。

  第四部分:美国电子工业协会登记顺序号。多位数字-该器件在美国电子工业协会登记的顺序号。

  第五部分:用字母表示器件分档。A、B、C、D、┄┄-同一型号器件的不同档别。如:JAN2N3251A表示PNP硅高频小功率开关三极管,JAN-军级、2-三极管、N-EIA 注册标志、3251-EIA登记顺序号、A-2N3251A档。

  德国、法国、意大利、荷兰、比利时等欧洲国家以及匈牙利、罗马尼亚、南斯拉夫、波兰等东欧国家,大都采用国际电子联合会半导体分立器件型号命名方法。这种命名方法由四个基本部分组成,各部分的符号及意义如下:

  第一部分:用字母表示器件使用的材料。A-器件使用材料的禁带宽度Eg=0.6~1.0eV 如锗、B-器件使用材料的Eg=1.0~1.3eV 如硅、C-器件使用材料的Eg>

  1.3eV 如砷化镓、D-器件使用材料的Eg

  第二部分:用字母表示器件的类型及主要特征。A-检波开关混频二极管、B-变容二极管、C-低频小功率三极管、D-低频大功率三极管、E-隧道二极管、F-高频小功率三极管、G-复合器件及其他器件、H-磁敏二极管、K-开放磁路中的霍尔元件、L-高频大功率三极管、M-封闭磁路中的霍尔元件、P-光敏器件、Q-发光器件、R-小功率晶闸管、S-小功率开关管、T-大功率晶闸管、U-大功率开关管、X-倍增二极管、Y-整流二极管、Z-稳压二极管。

  第三部分:用数字或字母加数字表示登记号。三位数字-代表通用半导体器件的登记序号、一个字母加二位数字-表示专用半导体器件的登记序号。

  第四部分:用字母对同一类型号器件进行分档。A、B、C、D、E┄┄-表示同一型号的器件按某一参数进行分档的标志。

  1、稳压二极管型号的后缀。其后缀的第一部分是一个字母,表示稳定电压值的容许误差范围,字母A、B、C、D半导体、E分别表示容许误差为±1%、±2%、±5%、±10%、±15%;其后缀第二部分是数字,表示标称稳定电压的整数数值;后缀的第三部分是字母V,代表小数点,字母V之后的数字为稳压管标称稳定电压的小数值。

  3、晶闸管型号的后缀也是数字,通常标出最大反向峰值耐压值和最大反向关断电压中数值较小的那个电压值。

  如:BDX51-表示NPN硅低频大功率三极管,AF239S-表示PNP锗高频小功率三极管。

  第二部分:A-二极管、C-三极管、AP-光电二极管、CP-光电三极管、AZ-稳压管、RP-光电器件。

  第四部分:A、B、C┄┄-表示同一型号器件的变型产品。未来发展以GaN(氮化镓)为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产 成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上 GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。

  今年是摩尔法则(Moore’slaw)问世50周年,这一法则的诞生是半导体技术发展史上的一个里程碑。

  这50年里,摩尔法则成为了信息技术发展的指路明灯。计算机从神秘不可近的庞然大物变成多数人都不可或缺的工具,信息技术由实验室进入无数个普通家庭,因特网将全世界联系起来,多媒体视听设备丰富着每个人的生活。这一法则决定了信息技术的变化在加速,产品的变化也越来越快。人们已看到,技术与产品的创新大致按照它的节奏,超前者多数成为先锋,而落后者容易被淘汰。

  这一切背后的动力都是半导体芯片。如果按照旧有方式将晶体管、电阻和电容分别安装在电路板上,那么不仅个人电脑和移动通信不会出现,连基因组研究、计算机辅助设计和制造等新科技更不可能问世。有关专家指出,摩尔法则已不仅仅是针对芯片技术的法则;不久的将来,它有可能扩展到无线技术、光学技术、传感器技术等领域,成为人们在未知领域探索和创新的指导思想。

  毫无疑问,摩尔法则对整个世界意义深远。不过,随着晶体管电路逐渐接近性能极限,这一法则将会走到尽头。摩尔法则何时失效?专家们对此众说纷纭。早在1995年在芝加哥举行信息技术国际研讨会上,美国科学家和工程师杰克·基尔比表示,5纳米处理器的出现或将终结摩尔法则。中国科学家和未来学家周海中在此次研讨会上预言,由于纳米技术的快速发展,30年后摩尔法则很可能就会失效。2012年,日裔美籍理论物理学家加来道雄在接受智囊网站采访时称,“在10年左右的时间内,我们将看到摩尔法则崩溃。”前不久,摩尔本人认为这一法则到2020年的时候就会黯然失色。一些专家指出,即使摩尔法则寿终正寝,信息技术前进的步伐也不会变慢。半导体相关产品功率半导体模块igbt模块mmgt450wb170b6c产品规格:齐全产品数量:2222经营模式:生产型, 贸易型执照认证:已认证最近更新:2023/11/22 9:14:51经营品牌:IXYS艾赛斯、西门康、富士、三菱注意:采购为型号为准,请新老客户跟我公司,客服确定好现货在下单。 功率半导体模块igbt模块 mmgtu40s120b6c mmgt¥1元/个

  螺纹点胶机是一款用于对螺丝的螺纹,接头的螺纹等紧固件涂抹密封胶水的机械。用螺纹点胶机进行螺纹涂胶,工作效率高、涂胶量均匀、密封效果好。

  螺纹涂胶机,又称紧固件涂胶机。专用于各种螺丝牙槽打胶、涂胶,出胶均匀、速度快、重复性好。广泛应用于螺杆、螺丝、接头、螺柱等紧固件涂胶。

  螺旋升降机是由蜗轮蜗杆、箱体、轴承、丝杠等零部件组成。工作原理为:电机或者手动驱动蜗杆旋转,蜗杆驱动蜗轮减速旋转,蜗轮内腔加工为内螺纹,驱动丝杠上下移动,由于内部有蜗轮蜗杆,丝杠的减速作用,达到放大推力的作用。

  智慧楼宇app是专为商务楼宇打造的应用,能随时验证身份扫描二维码进出闸机,能查看商务楼里店铺的各种优惠信息,了解楼层的分布,支持楼层导航,是在商务楼工作的好帮手。

  螺旋式熔断器由瓷帽、熔断管、瓷套、上接线座和下接线座及瓷底座等部分组成。

  螺柱焊机是指把金属螺柱或类似零件,经过瞬间加压和放电,将整个端面焊于工件上的焊机。靠焊枪中的弹簧压力将螺柱压入熔池,从而形成金属再结晶连接。电弧法螺柱焊作为熔化焊方法的一种,它的接头是在焊枪中弹簧压力条件下形成的,所以具有压力焊的特征,螺柱插入熔池后,不能马上断电,更不允许螺柱下落未插入熔池前断电。要求有一段带电顶锻时间,以保证接头能形成完整的再结晶过程。

  适用于各种管材(PVC-U给水管、排污管、低压给水管、低压输水管、芯层发泡管、双壁波纹管、PE给水管)、板材的耐外冲击性能的测定,也适用于硬质塑料板材。该机的能量测量范围300J可进行A法、B法、C法三种试验。半自动气动夹紧装置;下落高度计算机自动控制及落锤的升降;电磁铁自动捕捉,防止试样被二次冲击。落锤冲击试验机,适用于各种管材(PVC-U给水管、排污管、低压给水管、低压输水管、芯层发泡管、双壁波纹管、PE给水管)、板材的耐外冲击性能的测定,也适用于硬质塑料板材。产品符合行业标准JB/T9389落锤冲击试验机技术条件和国家标准GB/T14152、GB/T14153、GB/T6112;同时满足GB/T5836、GB/T10002.1、GB/T10002.3、GB/T13664、GB/T16800、GB/T18477等试验方法标准要求。

  落地式恒温振荡器是供医疗卫生、医药、农业、科研等部门作储藏菌种、生物培养是科研仪器的必须设备。可以提供更广范围的温度控制,能满足从科研到中式生产的各种要求。

  吸塑包装是采用吸塑工艺生产出塑料制品,并用相应的设备对产品进行封装的总称。

  西林瓶(vial ),又称:硼硅玻璃或钠钙玻璃管制(模制)注射b体育剂瓶,是一种胶塞和铝塑组合盖封口的小瓶子。早期盘尼西林多用其盛装,故名西林瓶。 西林瓶有棕色、透明等种类、硼硅材质的西林瓶为市场上的主流产品。

020-88888888